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Abstract—In this letter, the concept of multiple serially-
concatenated codes is invoked in the context of stochastic res-
onance (SR), where the achievable performance is improved by
increasing noise power. More specifically, the receiver’s iterative
decoding process is characterized with the aid of extrinsic infor-
mation transfer (EXIT) charts, such that the SR effect induced
by a non-linear component is taken into account. Our simulation
results demonstrate that although the SR demodulator’s log-
likelihood ratio (LLR) outputs are not Gaussian distributed, the
corresponding EXIT trajectory matches the prediction from the
associated inner- and outer-codes’ EXIT curves, while reaching
the perfect convergence point in terms of mutual information.
Therefore, an infinitesimally low bit-error ratio (BER) is attained
by appropriately designing the channel code’s parameters based
on EXIT charts.

Index Terms—Comparator, EXIT chart, non-linear systems,
irregular codes, iterative detection, stochastic resonance.

I. I NTRODUCTION

STOCHASTIC resonance (SR) is a physical phenomenon,
which has the potential of improving the receiver’s detec-

tion performance, upon increasing the power of the additive
noise contaminating the signal. Typically, such an SR effect
can be observed in non-linear (NL) systems [1]–[3]. For these
reasons, the SR is especially useful in a scenario, where
a small signal is corrupted by additive noise and the NL
effects imposed by the receiver are intrinsically unavoidable.
However, owing to the presence of a NL component, it is
a challenging task to theoretically characterize its achievable
performance. The seminal studies [1], [2] focused on the
signal-to-noise ratio (SNR) metric in order to evaluate the SR
effect in a relatively simple manner. Furthermore, in [4], [5]
it was also found that SR improves the mutual information
(MI) exchange between the input and output signals. Consid-
ering that the specific definition of SNR depends on the SR
scenarios considered and that as mentioned in [3], the SNR is
not directly related to the achievable detection performance,
especially for non-Gaussian noise scenarios, it can be said
that the MI is a more suitable performance metric for the
scenario considered. Note that in order to practically attain
a near-capacity performance, which may be characterized by
near-unity MI, it is necessary to incorporate a channel code
into the system.

On the other hand, to the best of our knowledge, the
previous SR related studies [6]–[10] only considered uncoded
scenarios. However, practical systems typically employ a pow-
erful channel coding scheme, such as turbo [11] and low-
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density parity-check (LDPC) codes [12], which are capable of
increasing MI between the input/output signals, upon iterating
between multiple soft decoders. Furthermore, in [13] the
semi-analytical tool of extrinsic information transfer (EXIT)
charts was proposed for the sake of accurately predicting the
convergence behavior of the iterative decoding process, which
allows us to optimize multiple concatenated codes.

Against this background, the novel contributions of this
letter are as follows. We first propose a channel-encoded
SR system, which is capable of attaining a near-capacity
performance. More specifically, a serially-concatenated turbo
code, employing the NL component of a single-comparator,
is optimized with the aid of EXIT charts. Furthermore, we
prove that an infinitesimally low bit error ratio (BER) is
achievable by appropriately designing the channel code as
well as by providing a sufficient number of iterations amongst
multiple decoders. Another important finding is that our EXIT-
chart aided convergence prediction is also useful even in the
scenario, where the system includes a NL component as well
as additive non-Gaussian noise.

II. SYSTEM DESCRIPTION

A. System Model

Consider the transmitter structure of Fig. 1, supporting
multiple serially-concatenated codes, namely a channel en-
coder and a precoder. At the transmitter,B information bits
bi (i = 1, · · · , B) are firstly channel encoded by a convolu-
tional encoder, having a code rate ofRCC. TheC = B/RCC

channel-encoded bitsci (i = 1, · · · , C) are then interleaved by
a random interleaverΠ. Furthermore, the interleaved bits are
encoded by a unity-rate convolutional (URC) code1. The coded
bits are finally mapped to binary phase-shift keying (BPSK)
symbolssi ∈ {+1,−1} (i = 1, · · · , C), which are transmitted
to the receiver over additive noisy channels.

At the receiver,N signalsr(n)i (n = 1, · · · , N) are sampled
per transmitted symbolsi, which are represented by

r
(n)
i = si + η

(n)
i . (1)

More specifically, we assume that the real-valued additive
noise η

(n)
i is an identically and independently distributed

(IID) variable, which obeys the Gaussian-mixture distribution
having the probability density function (PDF) of [7]

f(u, σ) =
1

2σ
√

2π(1− β2)

×
{
exp

[
− (u/σ + β)2

2(1− β2)

]
+ exp

[
− (u/σ − β)2

2(1− β2)

]}
, (2)

1The role of the URC code is to impose an infinite impulse response (IIR),
which improves the achievable iterative decoding performance by efficiently
spreading the extrinsic information, as detailed in [14].
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Fig. 1. The iteratively-detected transceiver structure of our RSC-coded and
unity-rate precoded SR system, employing a single comparator.

whereσ represents the standard deviation, while the value of
β is in the range of0 < β < 12. Here, asβ approaches
zero,f(u, σ) becomes similar to the zero-mean unit-variance
Gaussian distribution. Moreover, the corresponding cumulative
distribution function (CDF) can be formulated by

F (u, σ) =
1

2

+
1

4

[
erf

(
u/σ + β√
2(1− β2)

)
+ erf

(
u/σ − β√
2(1− β2)

)]
. (3)

Then, the sampled signalsr(n)i are passed onto the comparator
of Fig. 1, which has a threshold ofθ. The comparator’s outputs
xi =

[
x
(1)
i , · · · , x(N)

i

]
are as follows:3

x
(n)
i =

{
1 (r

(n)
i ≥ θ)

0 (r
(n)
i < θ)

. (4)

Next, the binary sequencexi is input to the soft-input soft-
output (SISO) SR demodulator of Fig. 1, where the extrinsic
informationLe expressed in the form of log-likelihood ratios
(LLRs) is calculated under the assumption of perfect knowl-
edge of the standard deviationσ. Although there are several
algorithms, which may be employed by the SISO detector,
in this letter we adopt optimal maximuma posteriori (MAP)
detection, which is described later in Section II-B.

Assuming that in this letter a recursive systematic con-
volutional (RSC) code is used for the convolutional en-
coder/decoder of Fig. 1, the receiver employs iterative detec-
tion between the two SISO decoders [11], [16], i.e. the URC

2Note that additive Gaussian mixture noise has been widely adopted in the
diverse SR-related studies [3], [7]–[9]. More specifically, one of its explicit
examples is constituted by multiuser interference and impulsive noise in code-
division multiple access (CDMA) systems [15], while this Gaussian-mixture
framework may also be applicable to several other impulsive electromagnetic
interference scenarios, such as automobile ignition noise, military mobile
channels and indoor interference induced by mechanical switching.

3In order to expound a little further, we employed a comparator as a NL
component. However, other NL effects, such as particular NL channels and
bistable-potential systems [10], can be readily applicable to our proposed
architecture.

and RSC decoders4. To be more specific, the URC decoder
outputs the extrinsic informationLURC

e in the form of LLRs
with the aid of the SISO MAP detector’s outputsLMAP

e as well
as of thea priori LLRs LURC

apr , which are fed back from the
convolutional decoder to the URC decoder. The extrinsic LLRs
LURC
e are then input to the RSC decoder after deinterleaving.

The extrinsic LLRsLRSC
e are calculated at the RSC decoder,

output and are interleaved again, before being passed back to
the SISO URC decoder as thea priori information LURC

apr .
Finally, the RSC decoder outputs the estimated bitsb̂i after I
number of iterations. We note that since there is noa priori
information during the first iteration, the initial values ofLURC

apr

are set to zero.

B. The Optimal MAP Detector

Let us now derive thea posteriori LLR LMAP
apo , which is

calculated based on the optimal MAP criterion as follows:

LMAP
apo = ln

[
p(xi|si = −1)P1

p(xi|si = +1)P0

]
(5)

= ln

(
P1

P0

)
︸ ︷︷ ︸

LMAP
apr

+ ln

[∏N
n=1 p(x

(n)
i |si = −1)∏N

n=1 p(x
(n)
i |si = +1)

]
︸ ︷︷ ︸

LMAP
e

, (6)

whereLMAP
apr andLMAP

e represent thea priori and extrinsic
LLRs, while P0 andP1 are thea priori probabilities, which
correspond to the events ofsi = −1 and1, respectively.

Since the comparator’s output is binary, its conditional
probability density may be expressed as

p(x
(n)
i |si) =

{
F (θ − si, σ) (x

(n)
i = 0)

1− F (θ − si, σ) (x
(n)
i = 1)

. (7)

Considering that the possible number of non-zero elements,
which are contained in the comparator’s binary outputsxi, is
varied from 0 to N , the legitimate number of the potential
extrinsic LLRsLMAP

e is equal to(N + 1), given the specific
system parameters of (N, σ, θ). This implies that the related
a priori LLR values, which are input from the SR MAP
detector to the URC decoder, are not Gaussian distributed
in the comparator-based scenario of Fig. 1. Nevertheless,
we will show later in Section III that the corresponding
EXIT trajectory matches the inner- and outer-EXIT curves,
as expected for a Gaussian scenario.

C. EXIT-Chart Analysis

In this section, we briefly highlight the concept of EXIT
charts, which is a powerful technique used for analyzing the
convergence behavior of iterative detection aided transmissions
based on the turbo-coding principle. For further detailed

4Since in this letter the SISO MAP detector calculates extrinsic information
LMAP
e based on a binary input sequencexn

i , it remains unaffected by the
potential feedback from the URC decoder, which is referred to asLMAP

apr .
On the other hand, when employing multi-level constellations are input
to the MAP detector instead ofxn

i , its extrinsic LLR valuesLMAP
e also

become affected byLMAP
apr . In such a scenario, iterations between the SISO

MAP detector and the SISO URC decoder further improve the achievable
performance, as mentioned in [11].
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explanations of EXIT charts, refer to [16] and the references
therein. In turbo detection, an infinitesimally low BER may
be attained by the iterative exchange of extrinsic MI between
two SISO decoders, i.e. the inner and outer decoders. Since
the iterative decoding process is not linear, the prediction of
its convergence behavior is a challenging task.

The ingenious tool of EXIT charts was proposed by ten
Brink [13] for the visualization of the iterative decoding be-
havior and for the prediction of the ‘BER-cliff’ position, where
the BER suddenly drops. More specifically, the input/output
relationship of the MI at each decoder is characterized by the
EXIT chart and then their interaction assisted by the iterative
decoding process is examined without time-consuming bit-
by-bit Monte-Carlo simulations. Ideally, the inner and outer
decoders’ EXIT curves should not intersect before the perfect
convergence point of(IA, IE) = (1.0, 1.0), which leads to per-
fect extrinsic information exchange between the two decoders
of Fig. 1. The emergence of an open EXIT chart convergence
tunnel enables the system to achieve an infinitesimally low
BER at the corresponding SNR.

Furthermore, the maximum achievable rate may be formu-
lated based on the inner code’s EXIT curve as follows: [16]

R = RCCA · log2 M [bits/symbol], (8)

where 0 ≤ RCC ≤ 1 represents the RSC code’s rate and
0 ≤ A ≤ 1 denotes the area under the inner decoder’s EXIT
curve [16]. Moreover,M is the number of constellation points,
which is fixed toM = 2 in this letter. We note that the
maximum achievable rate of Eq. (8) may be useful for the SR-
aided systems, since the corresponding inner decoder’s EXIT
curve takes into account the effects of NL components.

III. S IMULATION RESULTS

In this section, we provide our performance results in
order to characterize the proposed RSC-coded and unity-rate
precoded SR scheme in the context of the single-comparator-
based NL system.

We assumed that the number of information bits per frame
was B = 105, while considering the three different half-
rate RSC codes, namely the length-two RSC(2,1,2) code, the
length-three RSC(2,1,3) code and the length-five RSC(2,1,5)
code, having the octal generator polynomials of(Gr, G) =
(3, 2)8, (Gr, G) = (7, 5)8 and (Gr, G) = (35, 23)8, respec-
tively. The threshold value of the receiver’s comparator was set
to θ = 1.55. Furthermore, the Gaussian-mixture noise process
was characterized byβ = 0.9. Additionally, the information
bits bi were equi-probably distributed.

Firstly, Fig. 2 shows the maximum achievable rates of our
arrangements, which were obtained according to Eq. (8). Here,
the number of samples per symbol was varied fromN = 1
to 5. Observe in Fig. 2 that upon increasing the standard
deviationσ from zero to approximatelyσ = 1.1, the maximum
achievable rate monotonically increased in each scenario,
which is achieved as the explicit merit of SR. To be more

5Here, the thresholding valueθ was determined from our extensive simu-
lations, though it does not guarantee its optimality. The related investigation
is an open issue.

Noise RMS value σ

0 1 2 3 4

M
ax

im
um

 a
ch

ie
va

bl
e 

lim
it 

[b
its

/s
ym

bo
l]

0.0

0.2

0.4

0.6

0.8

1.0

N = 1
N = 2
N = 3
N = 4
N = 5

0.5 bits/symbol

Fig. 2. The maximum achievable rates of our RSC-coded and URC-precoded
SR system, employing a single comparator. Here, the number of samples per
symbol was varied fromN = 1 to 5.

specific, this SR effect is especially beneficial for low-SNR
scenarios, albeit this is achieved by sacrificing the achievable
performance in the low-noise regime, as shown in Fig. 2.
By contrast, in the high-noise range ofσ > 1.1, an increase
in the value ofσ degraded the achievable performance, in a
similar manner to its linear-system counterpart. Furthermore,
as expected, a higher number of samplesN leads to a higher
maximum achievable rate, which is a benefit of having a higher
sampling frequency. In order to provide further insights, since
a half-rate(RCC = 0.5) channel code was employed in our
simulations, the scenarios ofN = 3, 4 and5 have the potential
of attaining a near-error-free performance around the noise
root-mean-square (RMS) value ofσ = 1, as shown in Fig. 2.

Furthermore, the inner- and outer-codes’ EXIT curves were
drawn in Fig. 3, where we varied the standard deviation from
σ = 0.7 to 1.3 with the step of 0.2, while the number of
samples per symbol wasN = 3. Furthermore, we plotted
the outer code’s EXIT curves, which correspond to the three
aforementioned half-rate RSC codes, as well as to the EXIT
trajectory associated withσ = 1.1 and the RSC(2,1,2) code. It
was found from Fig. 3 that an open tunnel emerged between
the inner- and outer-codes’ EXIT curves for the scenario of
σ = 1.1 and the RSC(2,1,2) code. More specifically, the
EXIT trajectory ofσ = 1.1 reached the perfect convergence
point of (IA, IE) = (1, 1), while reasonably matching the
corresponding inner- and outer-codes’ EXIT curves.6

Finally, Fig. 4 compares the achievable BER of the channel
coded system corresponding to the trajectory of Fig. 3, where
the number of iterationsI was given byI = 0, 5, 10, 20 and
35. As predicted from the EXIT charts of Fig. 3, a near-error-
free performance was achieved aroundσ = 1.1 with the aid

6The application of EXIT chart is based on the assumption that thea priori
LLR values are uncorrelated and that their PDF is Gaussian distributed [16].
Our SR-based turbo-coded system of Fig. 1 does not apply to this, since
the legitimate number of the MAP detector’s extrinsic LLR valuesLMAP

e is
(N+1). However, Fig. 3 shows that the effects of the non-Gaussian distributed
a priori LLR are not severe in the simulated scenarios, which still enables us
to predict the convergence behavior of the iterative process.



4

IA

0.0 0.2 0.4 0.6 0.8 1.0

I E

0.0

0.2

0.4

0.6

0.8

1.0
σ = 0.7
σ = 0.9
σ = 1.1
σ = 1.3
CC, RSC(2,1,2)
CC, RSC(2,1,3)
CC, RSC(2,1,5)
trajectory, σ = 1.1

Fig. 3. EXIT charts of our RSC-coded and URC-precoded SR system,
employing a single comparator. Here, the standard deviation of Gaussian-
mixture noise was varied fromσ = 0.7 to 1.3 with the step of0.2, while
the number of samples per symbol wasN = 3. Furthermore, the outer EXIT
curve of half-rate length-two RSC(2,1,2), length-three RSC(2,1,3) and length-
five RSC(2,1,5) codes were considered. We also plotted the EXIT trajectory,
which was associated withσ = 1.1, the interleaver length ofC = 2 × 105

and the RSC(2,1,2) code.
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Fig. 4. Achievable BER performance of our RSC-coded and URC-precoded
SR system, employing a single comparator. The number of iterations was
given by I = 0, 5, 10, 20 and35, while the number of samples per symbol
was maintained to beN = 3.

of a sufficiently high number of iterationsI. Additionally, it
is specific to the SR scheme of Fig. 1 that a so-called ‘BER
cliff’ [16] was found not only for a lowσ but also for a high
σ, which is not observed in the classic-modem scenarios.

An important implication of the above-mentioned simula-
tion results is that by adaptively matching the shape of the
outer code’s EXIT curve to that of the inner code with the aid
of irregular channel coding [16], an infinitesimally low BER
may be achieved over a wide range of SNRs.

In this letter, we focused our attention on the scenario of

using a single comparator [6], which acts as a 1-bit quantizer.
However, the proposed system can be readily extended to other
nonlinear systems, such as a multiple-comparator based one
[17], which may further improve the SR performance, although
the detailed investigations will be left for our future study.

IV. CONCLUSIONS

In this letter, we proposed the serially-concatenated channel-
encoded arrangement of Fig. 1 in the context of SR. More
specifically, the concept of EXIT charts was invoked for
analyzing the convergence behavior of iterative decoding
process, while taking into consideration the effects of the
NL component and the non-Gaussian noise. Our simulation
results showed that an infinitesimally low BER performance
is achievable in our arrangement, as predicted from the as-
sociated EXIT charts. It was also implied that an adaptive
channel coding scheme based on the irregular code may be
useful for SR-aided NL systems, similarly to its linear-system
counterpart [16].
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